Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams

نویسندگان

  • Dung Luong
  • Dirk Lehmhus
  • Nikhil Gupta
  • Joerg Weise
  • Mohamed Bayoumi
چکیده

The present study investigates the mechanical performance of syntactic foams produced by means of the metal powder injection molding process having an Invar (FeNi36) matrix and including cenospheres as hollow particles at weight fractions (wt.%) of 5 and 10, respectively, corresponding to approximately 41.6 and 60.0 vol.% in relation to the metal content and at 0.6 g/cm³ hollow particle density. The synthesis process results in survival of cenospheres and provides low density syntactic foams. The microstructure of the materials is investigated as well as the mechanical performance under quasi-static and high strain rate compressive loads. The compressive stress-strain curves of syntactic foams reveal a continuous strain hardening behavior in the plastic region, followed by a densification region. The results reveal a strain rate sensitivity in cenosphere-based Invar matrix syntactic foams. Differences in properties between cenosphere- and glass microsphere-based materials are discussed in relation to the findings of microstructural investigations. Cenospheres present a viable choice as filler material in iron-based syntactic foams due to their higher thermal stability compared to glass microspheres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data characterizing tensile behavior of cenosphere/HDPE syntactic foam

The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine f...

متن کامل

Novel syntactic foams made of ceramic hollow micro-spheres and starch – theory, structure and properties

Novel syntactic foams made of starch and ceramic hollow micro-spheres were developed. Foams of four different micro-sphere size groups were manufactured with either preor post-mould gelatinisation process. Compressive failure behaviour and mechanical properties were evaluated. Not much difference in failure behaviour or in mechanical properties between the two processes (preand post-mould gel) ...

متن کامل

Carbon-Nanofiber-Reinforced Syntactic Foams: Compressive Properties and Strain Rate Sensitivity

The current study is focused on exploring the possibility of reinforcing syntactic foams with carbon nanofibers (CNFs). Syntactic foams are hollow, particle-filled composites that are widely used in marine structures and are now finding applications in other modes of transportation due to their high stiffness-to-weight ratio. The compressive properties of syntactic foams reinforced with CNFs ar...

متن کامل

Vibration-Assisted Sputter Coating of Cenospheres: A New Approach for Realizing Cu-Based Metal Matrix Syntactic Foams

The coating of hollow alumino-silicate microspheres or cenospheres with thin layers of Cu by means of vibration-assisted magnetron sputtering yields a starting material with considerable potential for the production of new types of metal matrix syntactic foams as well as optimized variants of conventional materials of this kind. This study introduces the coating process and the production of ma...

متن کامل

Dynamic and Thermal Properties of Aluminum Alloy A356/Silicon Carbide Hollow Particle Syntactic Foams

Aluminum alloy A356 matrix syntactic foams filled with SiC hollow particles (SiCHP) are studied in the present work. Two compositions of syntactic foams are studied for quasi-static and high strain rate compression. In addition, dynamic mechanical analysis is conducted to study the temperature dependent energy dissipation and damping capabilities of these materials. The thermal characterization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016